DNA origami-based shape IDs for single-molecule nanomechanical genotyping
نویسندگان
چکیده
Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ∼10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.
منابع مشابه
Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy
DNA origami involves the folding of long single-stranded DNA into designed structures with the aid of short staple strands; such structures may enable the development of useful nanomechanical DNA devices. Here we develop versatile sensing systems for a variety of chemical and biological targets at molecular resolution. We have designed functional nanomechanical DNA origami devices that can be u...
متن کاملNanomechanical DNA Origami pH Sensors
Single-molecule pH sensors have been developed by utilizing molecular imaging of pH-responsive shape transition of nanomechanical DNA origami devices with atomic force microscopy (AFM). Short DNA fragments that can form i-motifs were introduced to nanomechanical DNA origami devices with pliers-like shape (DNA Origami Pliers), which consist of two levers of 170-nm long and 20-nm wide connected a...
متن کاملA DNA origami of slovenia in nano dimensions.
The principle of the rapidly evolving DNA nanotechnology is the design of nanostructures based only on the Watson-Crick base pairing and the oligonucleotide sequence. DNA origami technique is able to produce a variety of different shapes by constraining a long single stranded DNA molecule with a large number of short oligonucleotides. We designed 227 short oligonucleotides in order to scaffold ...
متن کاملElectronically addressable nanomechanical switching of i-motif DNA origami assembled on basal plane HOPG.
Here, a pH-induced nanomechanical switching of i-motif structures incorporated into DNA origami bound onto cysteamine-modified basal plane HOPG was electronically addressed, demonstrating for the first time the electrochemical read-out of the nanomechanics of DNA origami. This paves the way for construction of electrode-integrated bioelectronic nanodevices exploiting DNA origami patterns on con...
متن کاملSelf-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates.
A central challenge in nanotechnology is the parallel fabrication of complex geometries for nanodevices. Here we report a general method for arranging single-walled carbon nanotubes in two dimensions using DNA origami-a technique in which a long single strand of DNA is folded into a predetermined shape. We synthesize rectangular origami templates ( approximately 75 nm x 95 nm) that display two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017